MOD 取り構造体
概要
mod M での四則演算を行う構造体.
注意
- $a/0$, $0^0$ を計算しようとすると以上終了する
- 定数倍は遅め
実装
template <signed M, unsigned T>
struct mod_int {
constexpr static signed MODULO = M;
constexpr static unsigned TABLE_SIZE = T;
signed x;
mod_int() : x(0) {}
mod_int(long long y) : x(static_cast<signed>(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO)) {}
mod_int(int y) : x(y >= 0 ? y % MODULO : MODULO - (-y) % MODULO) {}
mod_int &operator+=(const mod_int &rhs) {
if ((x += rhs.x) >= MODULO) x -= MODULO;
return *this;
}
mod_int &operator-=(const mod_int &rhs) {
if ((x += MODULO - rhs.x) >= MODULO) x -= MODULO;
return *this;
}
mod_int &operator*=(const mod_int &rhs) {
x = static_cast<signed>(1LL * x * rhs.x % MODULO);
return *this;
}
mod_int &operator/=(const mod_int &rhs) {
x = static_cast<signed>((1LL * x * rhs.inv().x) % MODULO);
return *this;
}
mod_int operator-() const { return mod_int(-x); }
mod_int operator+(const mod_int &rhs) const { return mod_int(*this) += rhs; }
mod_int operator-(const mod_int &rhs) const { return mod_int(*this) -= rhs; }
mod_int operator*(const mod_int &rhs) const { return mod_int(*this) *= rhs; }
mod_int operator/(const mod_int &rhs) const { return mod_int(*this) /= rhs; }
bool operator<(const mod_int &rhs) const { return x < rhs.x; }
mod_int inv() const {
assert(x != 0);
if (x <= static_cast<signed>(TABLE_SIZE)) {
if (_inv[1].x == 0) prepare();
return _inv[x];
} else {
signed a = x, b = MODULO, u = 1, v = 0, t;
while (b) {
t = a / b;
a -= t * b;
std::swap(a, b);
u -= t * v;
std::swap(u, v);
}
return mod_int(u);
}
}
mod_int pow(long long t) const {
assert(!(x == 0 && t == 0));
mod_int e = *this, res = mod_int(1);
for (; t; e *= e, t >>= 1)
if (t & 1) res *= e;
return res;
}
mod_int fact() {
if (_fact[0].x == 0) prepare();
return _fact[x];
}
mod_int inv_fact() {
if (_fact[0].x == 0) prepare();
return _inv_fact[x];
}
mod_int choose(mod_int y) {
assert(y.x <= x);
return this->fact() * y.inv_fact() * mod_int(x - y.x).inv_fact();
}
static mod_int _inv[TABLE_SIZE + 1];
static mod_int _fact[TABLE_SIZE + 1];
static mod_int _inv_fact[TABLE_SIZE + 1];
static void prepare() {
_inv[1] = 1;
for (int i = 2; i <= (int)TABLE_SIZE; ++i) {
_inv[i] = 1LL * _inv[MODULO % i].x * (MODULO - MODULO / i) % MODULO;
}
_fact[0] = 1;
for (unsigned i = 1; i <= TABLE_SIZE; ++i) {
_fact[i] = _fact[i - 1] * int(i);
}
_inv_fact[TABLE_SIZE] = _fact[TABLE_SIZE].inv();
for (int i = (int)TABLE_SIZE - 1; i >= 0; --i) {
_inv_fact[i] = _inv_fact[i + 1] * (i + 1);
}
}
};
template <int M, unsigned F>
std::ostream &operator<<(std::ostream &os, const mod_int<M, F> &rhs) {
return os << rhs.x;
}
template <int M, unsigned F>
std::istream &operator>>(std::istream &is, mod_int<M, F> &rhs) {
long long s;
is >> s;
rhs = mod_int<M, F>(s);
return is;
}
template <int M, unsigned F>
mod_int<M, F> mod_int<M, F>::_inv[TABLE_SIZE + 1];
template <int M, unsigned F>
mod_int<M, F> mod_int<M, F>::_fact[TABLE_SIZE + 1];
template <int M, unsigned F>
mod_int<M, F> mod_int<M, F>::_inv_fact[TABLE_SIZE + 1];
template <int M, unsigned F>
bool operator==(const mod_int<M, F> &lhs, const mod_int<M, F> &rhs) {
return lhs.x == rhs.x;
}
template <int M, unsigned F>
bool operator!=(const mod_int<M, F> &lhs, const mod_int<M, F> &rhs) {
return !(lhs == rhs);
}
const int MF = 1000010;
const int MOD = 1000000007;
using mint = mod_int<MOD, MF>;
mint binom(int n, int r) { return (r < 0 || r > n || n < 0) ? 0 : mint(n).choose(r); }
mint fact(int n) { return mint(n).fact(); }
mint inv_fact(int n) { return mint(n).inv_fact(); }